
Number Systems

and Binary Arithmetic

© Copyright 2000 Indiana University Board of Trustees

Introduction to Numbering

Systems

 We are all familiar with the decimal
number system (Base 10). Some other
number systems that we will work with are:

– Binary  Base 2

– Octal  Base 8

– Hexadecimal  Base 16

© Copyright 2000 Indiana University Board of Trustees

Characteristics of Numbering

Systems

1) The number of digits is equal to the size of
the base.

2) Zero is always the first digit.

3) The base number is never a digit.

4) When 1 is added to the largest digit, a sum
of zero and a carry of one results.

5) Numeric values determined by the have
implicit positional values of the digits.

© Copyright 2000 Indiana University Board of Trustees

Significant Digits

Binary: 11101101

Most significant digit Least significant digit

Hexadecimal: 1D63A7A

Most significant digit Least significant digit

© Copyright 2000 Indiana University Board of Trustees

Binary Number System

 Also called the “Base 2 system”

 The binary number system is used to model

the series of electrical signals computers use

to represent information

 0 represents the no voltage or an off state

 1 represents the presence of voltage or an

on state

© Copyright 2000 Indiana University Board of Trustees

Binary Numbering Scale

Base 2

Number

Base 10

Equivalent
Power

Positional

Value

000 0 20 1

001 1 21 2

010 2 22 4

011 3 23 8

100 4 24 16

101 5 25 32

110 6 26 64

111 7 27 128

© Copyright 2000 Indiana University Board of Trustees

Binary Addition

4 Possible Binary Addition Combinations:

(1) 0 (2) 0

+0 +1

00 01

(3) 1 (4) 1

+0 +1

01 10

SumCarry

Note that leading

zeroes are frequently

dropped.

© Copyright 2000 Indiana University Board of Trustees

Decimal to Binary Conversion

 The easiest way to convert a decimal number

to its binary equivalent is to use the Division

Algorithm

 This method repeatedly divides a decimal

number by 2 and records the quotient and

remainder

– The remainder digits (a sequence of zeros and

ones) form the binary equivalent in least

significant to most significant digit sequence

© Copyright 2000 Indiana University Board of Trustees

Division Algorithm

Convert 67 to its binary equivalent:

6710 = x2

Step 1: 67 / 2 = 33 R 1 Divide 67 by 2. Record quotient in next row

Step 2: 33 / 2 = 16 R 1 Again divide by 2; record quotient in next row

Step 3: 16 / 2 = 8 R 0 Repeat again

Step 4: 8 / 2 = 4 R 0 Repeat again

Step 5: 4 / 2 = 2 R 0 Repeat again

Step 6: 2 / 2 = 1 R 0 Repeat again

Step 7: 1 / 2 = 0 R 1 STOP when quotient equals 0

1 0 0 0 0 1 12

© Copyright 2000 Indiana University Board of Trustees

Binary to Decimal Conversion

 The easiest method for converting a

binary number to its decimal equivalent

is to use the Multiplication Algorithm

 Multiply the binary digits by increasing

powers of two, starting from the right

 Then, to find the decimal number

equivalent, sum those products

© Copyright 2000 Indiana University Board of Trustees

Multiplication Algorithm

Convert (10101101)2 to its decimal equivalent:

Binary 1 0 1 0 1 1 0 1

Positional Values

xxxxxxxx
2021222324252627

128 + 32 + 8 + 4 + 1Products

17310

© Copyright 2000 Indiana University Board of Trustees

Octal Number System

 Also known as the Base 8 System

 Uses digits 0 - 7

 Readily converts to binary

 Groups of three (binary) digits can be
used to represent each octal digit

 Also uses multiplication and division
algorithms for conversion to and from
base 10

© Copyright 2000 Indiana University Board of Trustees

Decimal to Octal Conversion

Convert 42710 to its octal equivalent:

427 / 8 = 53 R3 Divide by 8; R is LSD

53 / 8 = 6 R5 Divide Q by 8; R is next digit

6 / 8 = 0 R6 Repeat until Q = 0

6538

© Copyright 2000 Indiana University Board of Trustees

Octal to Decimal Conversion

Convert 6538 to its decimal equivalent:

6 5 3
xxx

82 81 80

384 + 40 + 3

42710

Positional Values

Products

Octal Digits

© Copyright 2000 Indiana University Board of Trustees

Octal to Binary Conversion

Each octal number converts to 3 binary digits

To convert 6538 to binary, just

substitute code:

6 5 3

110 101 011

© Copyright 2000 Indiana University Board of Trustees

Hexadecimal Number System

 Base 16 system

 Uses digits 0-9 &

letters A,B,C,D,E,F

 Groups of four bits

represent each

base 16 digit

© Copyright 2000 Indiana University Board of Trustees

Hexadecimal Number System

 Each hexadecimal digit represents four

binary digits, and the primary use of

hexadecimal notation is as a human-

friendly representation of binary coded

values in computing and digital

electronics.

© Copyright 2000 Indiana University Board of Trustees

Decimal to Hexadecimal

Conversion

Convert 83010 to its hexadecimal equivalent:

830 / 16 = 51 R14

51 / 16 = 3 R3

3 / 16 = 0 R3

33E16

= E in Hex

© Copyright 2000 Indiana University Board of Trustees

Hexadecimal to Decimal

Conversion

Convert 3B4F16 to its decimal equivalent:

Hex Digits 3 B 4 F
xxx

163 162 161 160

12288 +2816 + 64 +15

15,18310

Positional Values

Products

x

© Copyright 2000 Indiana University Board of Trustees

Binary to Hexadecimal

Conversion

 The easiest method for converting binary to

hexadecimal is to use a substitution code

 Each hex number converts to 4 binary digits

© Copyright 2000 Indiana University Board of Trustees

Convert 0101011010101110011010102 to hex

using the 4-bit substitution code :

0101 0110 1010 1110 0110 1010

Substitution Code

5 6 A E 6 A

56AE6A16

© Copyright 2000 Indiana University Board of Trustees

Substitution code can also be used to convert

binary to octal by using 3-bit groupings:

010 101 101 010 111 001 101 010

Substitution Code

2 5 5 2 7 1 5 2

255271528

© Copyright 2000 Indiana University Board of Trustees

Complementary Arithmetic

 1’s complement

– Switch all 0’s to 1’s and 1’s to 0’s

Binary # 10110011

1’s complement 01001100

© Copyright 2000 Indiana University Board of Trustees

Complementary Arithmetic

 2’s complement

– Step 1: Find 1’s complement of the number

Binary # 11000110

1’s complement 00111001

– Step 2: Add 1 to the 1’s complement

00111001

+ 00000001

00111010

© Copyright 2000 Indiana University Board of Trustees

Binary Addition

 0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

 E.g.:

101
+101
1010

© Copyright 2000 Indiana University Board of Trustees

Binary Subtraction

 0 - 0 = 0

 0 - 1 = 1, and borrow 1 from the next

more significant bit

 1 - 0 = 1

 1 - 1 = 0

© Copyright 2000 Indiana University Board of Trustees

Binary Subtraction & Addition

 E.g.:

 111
- 10
101

© Copyright 2000 Indiana University Board of Trustees

Binary Subtraction & Addition

 E.g.:

 111
- 10
101

© Copyright 2000 Indiana University Board of Trustees

Binary Subtraction & Addition

 E.g.:

 111
- 10
101

© Copyright 2000 Indiana University Board of Trustees

Example: 11101011 - 01100110 (23510 - 10210)

 First we apply two's complement to 01100110 which gives us 10011010.

 Now we need to add 11101011 + 10011010, however when you do the
addition you always disregard the last carry, so our example would be:

 which gives us 10000101, now we can convert this value into decimal,
which gives 13310

So the full calculation in decimal is 23510 - 10210 = 13310 (correct !!)

Signed Binary

© Copyright 2000 Indiana University Board of Trustees

Example: 11101011 - 01100110 (23510 - 10210)

 First we apply two's complement to 01100110 which gives us 10011010.

 Now we need to add 11101011 + 10011010, however when you do the
addition you always disregard the last carry, so our example would be:

 which gives us 10000101, now we can convert this value into decimal,
which gives 13310

So the full calculation in decimal is 23510 - 10210 = 13310 (correct !!)

Signed Binary

© Copyright 2000 Indiana University Board of Trustees

Example: 01100100 - 01111000 (10010 - 12010)

 1’s complement and 2’s complement the bigger number which is 120

 Then add the result of the 2’s complement to the smaller number (100).

 1’s complement and 2’s complement the result of the addition leaving the

most significant bit (MSB) which is the sign bit as it is which is 1.

 Now we can convert this value into a negative decimal, which gives -2010

So, the full calculation in decimal is 10010 - 12010 = -2010 (correct !!)

01111000 (120)

10000111 1’s complement

+ 1 2’s complement

10001000

10001000

+01100100 (100)

11101100

1 1101100

1 0010011

+ 1

1 0010100 (-20)

The sign bit stays

the same. It is not

1’s complement and

2’s complement

Remember, 1 bit

indicates a NEGATIVE

sign, whereas 0 bit

indicates positive.

© Copyright 2000 Indiana University Board of Trustees

What is overflow?

 Overflow or arithmetic overflow is a

condition that occurs when a

calculation produces a result that is

greater in magnitude than what a given

data type can store or represent.

Overflow

© Copyright 2000 Indiana University Board of Trustees

Range of whole numbers

 We can check the range of whole numbers of

a computer using the following formula:

 Example, for an 8-bit, the range is as follows:

-2⁸⁻¹ to +2⁸⁻¹ - 1

= -2⁷ to +2⁷ - 1

= -128 to +127

© Copyright 2000 Indiana University Board of Trustees

How to identify the condition of occurrence of

overflow?

 Assuming we’re dealing with an 8-bit

computer, let’s look at the situations below:

 65 + 65 = +130 (An occurrence of overflow!)

 +128 – 5 = +123 (An occurrence of overflow!)

 Hence, an overflow occurs when the input or

output exceeds the range of the whole number

of the bits contained.

© Copyright 2000 Indiana University Board of Trustees

Signed Magnitude Numbers

Sign bit

0 = positive

1 = negative

31 bits for magnitude

This is your basic

Integer format

110010.. …00101110010101

© Copyright 2000 Indiana University Board of Trustees

Floating Point Numbers

 Real numbers must be normalized
using scientific notation:

0.1…× 2n where n is an integer

 Note that the whole number part is
always 0 and the most significant digit
of the fraction is a 1 – ALWAYS!

© Copyright 2000 Indiana University Board of Trustees

Single and Double Precision

 There are two most common floating point storage
format:

IEEE Short Real: 32 bits Sign: 1 bit

Exponent: 8 bits

Mantissa: 23 bits

Also called single precision

IEEE Long Real: 64 bits Sign: 1 bit

Exponent: 11 bits

Mantissa: 52 bits

Also called double precision

Floating Point Numbers

© Copyright 2000 Indiana University Board of Trustees

 How do floating-numbers stored?

The Sign

 The sign of a binary floating-point

number is represented by a single bit.

 A 1 bit indicates a negative number, and

a 0 bit indicates a positive number.

© Copyright 2000 Indiana University Board of Trustees

The Mantissa

 It is useful to consider the way decimal floating-point

numbers represent their mantissa. Using -3.154 x 105 as

an example, the sign is negative, the mantissa is 3.154,

and the exponent is 5. The fractional portion of the

mantissa is the sum of each digit divided by a power of

10:

.154 = 1/10 + 5/100 + 4/1000

 A binary floating-point number is similar. For example, in

the number +11.1011 x 23, the sign is positive, the

mantissa is 11.1011, and the exponent is 3. The fractional

portion of the mantissa is the sum of successive powers

of 2. In our example, it is expressed as:

.1011 = 1/2 + 0/4 + 1/8 + 1/16

© Copyright 2000 Indiana University Board of Trustees

 Or, you can calculate this value as 1011 divided by

24. In decimal terms, this is eleven divided by sixteen,

or 0.6875. Combined with the left-hand side of

11.1011, the decimal value of the number is 3.6875.

© Copyright 2000 Indiana University Board of Trustees

The Exponent

 IEEE Short Real exponents are stored as 8-bit unsigned integers
with a bias of 127. Let's use the number 1.101 x 25 as an example.
The exponent (5) is added to 127 and the sum (132) is binary
10100010. Here are some examples of exponents, first shown in
decimal, then adjusted, and finally in unsigned binary:

 The binary exponent is unsigned, and therefore cannot be
negative. The largest possible exponent is 128-- when added to
127, it produces 255, the largest unsigned value represented by 8
bits. The approximate range is from 1.0 x 2-127 to 1.0 x 2+128.

Exponent (E) Adjusted

(E+127)

Binary

+5 132 10000100

0 127 01111111

-10 117 01110101

+128 255 11111111

-127 0 00000000

-1 126 01111110

© Copyright 2000 Indiana University Board of Trustees

 While the exponent can be positive or negative, in binary

formats it is stored as an unsigned number that has a

fixed "bias" added to it.

 The exponent bias for single precision is 127 and for

double precision is 1023.

 The bias is 2k−1 − 1, where k is the number of bits in the

exponent field. For the eight-bit format, k = 3, so the bias

is 23−1 − 1 = 3. For IEEE 32-bit, k = 8, so the bias is

28−1 − 1 = 127.

© Copyright 2000 Indiana University Board of Trustees

The binary value stored in the IEEE floating point number

 To calculate the floating point numbers for known width of mantissa

and exponent, we use this formula:

Value = (-1)sign x (1.mantissa) x 2exponent-bias

 E.g.: 1 00001100 10001110000000000000000

s= -1

e= 00001100 = 12

m= 1000111

Value = (-1)s x (1.m) x 2e-127

= (-1)-1 x (1.1000111) x 212-127

= -1.1000111 x 2115

