Logic Circuit

Boolean Variables

- A Boolean Variable takes the value of either 0 or 1.
- In digital electronics, Boolean 0 and 1 correspond to binary 0 and 1.
- In logic, 0 and 1 are sometimes called FALSE and TRUE.
- We use symbols to represent Boolean variables.
 E.g.: A, B, C, X, Y, Z.

Logic Gate

- A logic gate is an elementary building block of a digital circuit .
- Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two binary conditions *low* (0) or *high* (1), represented by different voltage levels.
- The logic state of a terminal can, and generally does, change often, as the circuit processes data.
- Logic gates are the building blocks of digital circuits. Combinations of logic gates form circuits designed with specific tasks in mind.
- For example, logic gates are combined to form circuits to add binary numbers (adders), set and reset bits of memory (flip flops), multiplex multiple inputs, etc.
- There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

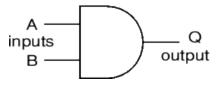
Truth Table

 A truth table is a good way to show the function of a logic gate. It shows the output states for every possible combination of input states. The symbols 0 (false) and 1 (true) are usually used in truth tables.

Logic Gate Symbols

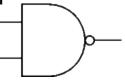
Inputs and outputs

 Gates have two or more inputs, except a NOT gate which has only one input. All gates have only one output. Usually the letters A, B, C and so on are used to label inputs, and Q is used to label the output. On this page the inputs are shown on the left and the output on the right.

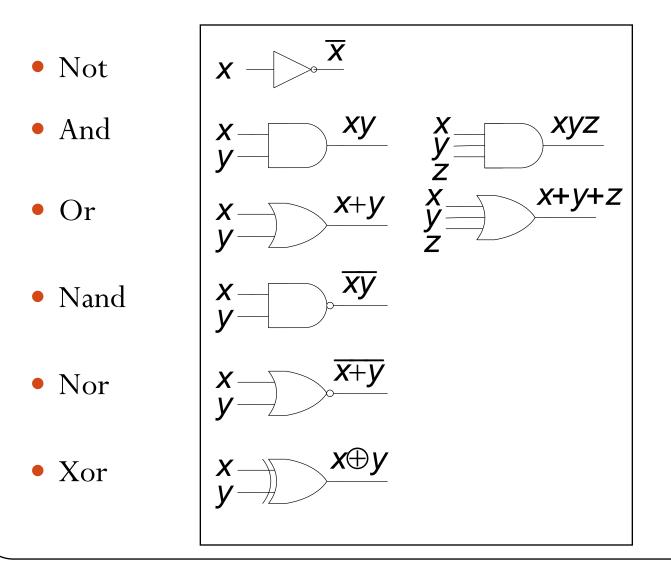


The inverting circle (o)

Some gate symbols have a circle on their output which means that their function includes inverting of the output. It is equivalent to feeding the output through a NOT gate. For example the NAND (<u>Not AND</u>) gate symbol shown on the right is the same as an AND gate symbol but with the addition of an inverting circle on the output.

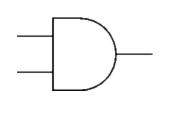


Basic logic gates



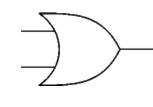
<u>AND</u>

- The AND gate requires two inputs and has one output.
- The AND gate only produces an output of 1 when BOTH the inputs are a 1, otherwise the output is 0.
 AND



Х	Y	Z = X . Y
0	0	0
0	1	0
1	0	0
1	1	1

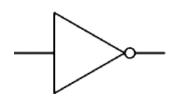
<u>OR</u>



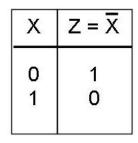
UK				
Х	Y	Z = X + Y		
0	0	0		
0 0	1	1		
1	0	1		
1	1	1		

<u>NOT</u>

- The NOT gate is also known as an inverter, simply because it changes the input to its opposite (inverts it).
- The NOT gate accepts only one input and the output is the opposite of the input. In other words, a low-voltage input (0) is converted to a high-voltage output (1). It's that simple!
- A common way of using the NOT gate is to simply attach the circle to the front of another gate. This simplifies the circuit drawing and simply says: "Invert the output from this gate."



NOT

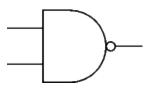


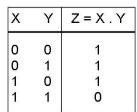
The NAND and NOR gates possess a special property: they are *universal*. That is, given enough gates, either type of gate is able to mimic the operation of *any* other gate type. Combinations of them can be used to accomplish any of the basic operations and can thus produce an inverter, an OR gate or an AND gate.

NAND

- This is an AND gate with the output inverted, as shown by the 'o' on the output.
- The output is true if input A AND input B are NOT both true: Q = NOT (A AND B)
- A NAND gate can have two or more inpl

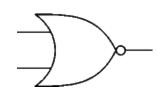
s true if NOT all inputs are true.





<u>NOR</u>

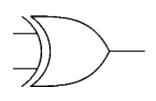
 This is an OR gate with the output inverted, as shown by the 'o' on the output. The output Q is true if NOT inputs A OR B are true: Q = NOT (A OR B) A NOR gate can have two or more input_____NOR____ true if no inputs are true.



	OR	
Х	Υ	$Z = \overline{X} + \overline{Y}$
0	0	1
0	1	0
1	0	0
1	1	0

<u>XOR</u>

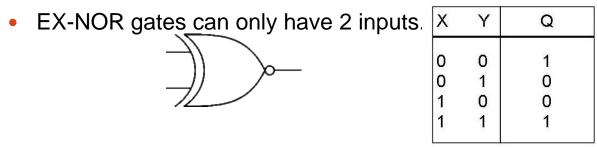
- The output Q is true if either input A is true OR input B is true, but not when both of them are true: Q = (A AND NOT B) OR (B AND NOT A)
- This is like an OR gate but excluding both inputs being true.
- The output is true if inputs A and B are DIFFERENT. EX-OR gates can only have 2 inputs.



Х	Y	Q
0	0	0
0 0	1	1
1	0	1
1	1	0

<u>XNOR</u>

- This is an EX-OR gate with the output inverted, as shown by the 'o' on the output.
- The output Q is true if inputs A and B are the SAME (both true or both false):
 Q = (A AND B) OR (NOT A AND NOT XNOR



Basic Boolean Identities

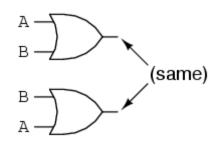
- As with algebra, there will be Boolean operations that we will want to simplify
 - We apply the following Boolean identities to help
 - For instance, in algebra, x = y * (z + 0) + (z * 0) can be simplified to just x = y * z

Identity Name	AND Form	OR Form	
Identity Law	1x = x	0+x=x	
Null (or Dominance) Law	0x = 0	1+ <i>x</i> = 1	
Idempotent Law	XX = X	X+X=X	
Inverse Law	$x\overline{x} = 0$	$x + \overline{x} = 1$	
Commutative Law	xy = yx	x + y = y + x	
Associative Law	(xy)z = x(yz)	(x+y)+z = x+(y+z)	
Distributive Law	x+yz = (x+y)(x+z)	x(y+z) = xy+xz	
Absorption Law	x(x+y) = x	x + xy = x	
DeMorgan's Law	$(\overline{xy}) = \overline{x} + \overline{y}$	$(\overline{x+y}) = \overline{x}\overline{y}$	
Double Complement Law	$\overline{\overline{x}} = x$		

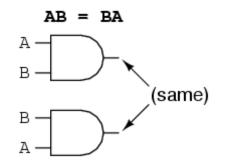
Commutative

Commutative property of addition

A + B = B + A



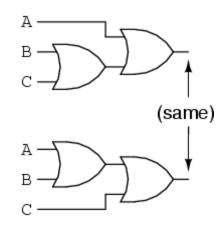
Commutative property of multiplication



Associative

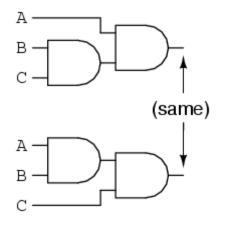
Associative property of addition

A + (B + C) = (A + B) + C

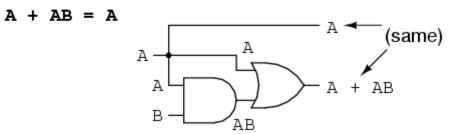


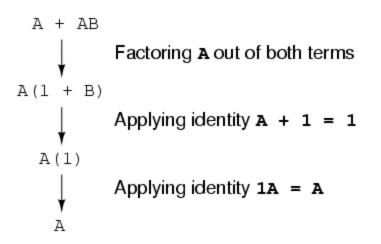
Associative property of multiplication

A(BC) = (AB)C

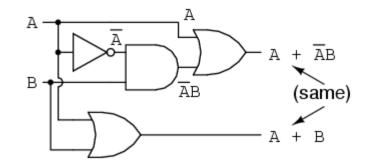


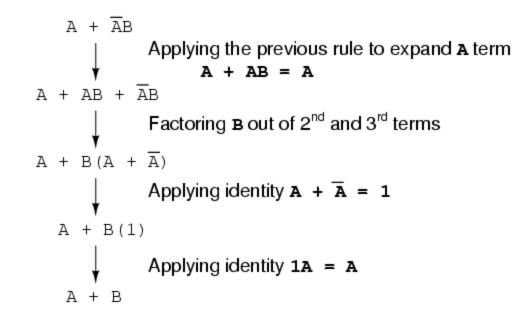
Simplification





$$A + \overline{AB} = A + B$$

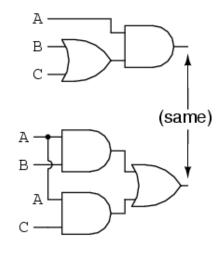




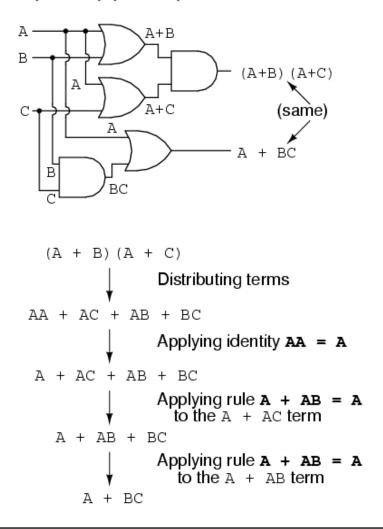
Distributive

Distributive property

A(B + C) = AB + AC



(A + B) (A + C) = A + BC



DeMorgan's

DeMorgan's Theorems



Practice:

- 1. Demonstrate by means of truth tables the validities of the following identities:
 - a. (XYZ)' = X' + Y' + Z'b. X + YZ = (X + Y)(X + Z)
 - c. X'Y + Y'Z + X'Z = XY' + YZ' + X'Z
- 2. Prove the following identity of each of the following Boolean equations using algebraic manipulation:

a. A'B + B'C' + AB + B'C = 1

b. Y + X'Z + XY' = X + Y + Z

c. AB + BC'D' + A'BC + C'D = B + C'D

Karnaugh Map

Minterms – Sum of Product (SOP)

- A product term in which all the variables appear exactly once (complemented or uncomplemented)
- The combination has the value 1
- E.g.: the four minterms for two variables, X and Y are X'Y', X'Y, XY' and XY.

• A Boolean function can be represented algebraically from a given truth table by forming the logical sum of all the minterms that produce 1 in the function.

Х	Y	Ζ	F
0	0	0	1
0 0 0 1	0 1	1	0
0	-	0 1	0 1 0
0	1	1	0
	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

• Expressed algebraically:

 $F = X'Y'Z' + X'YZ' + XY'Z + XYZ = m_0 + m_2 + m_5 + m_7$

In abbreviated form:

 $F(X, Y, Z) = \Sigma m(0, 2, 5, 7)$

Maxterms – Product of Sum (POS)

- A sum term that contains all the variables in complemented or uncomplemented form
- The combination has the value of 0
- E.g.: the four minterms for two variables, X and Y are X' + Y', X' + Y, X + Y' and X + Y.

• A boolean function can be represented algebraically from a given truth table by forming the logical sum of all the maxterms that produce 0 in the function.

Х	Y	Z	F
Λ		2	
0	0	0	1
0 0 0 1 1		0 1	0
0	0 1 1	0 1	0 1 0
0	1	1	0
1	0	0	0
1	0	1	1
1 1	1	0	0
1	1	1	1

Expressed algebraically:

 $F = (X + Y + Z')(X + Y' + Z')(X' + Y + Z)(X' + Y' + Z) = m_1 + m_3 + m_4 + m_6$

• Abbreviated form:

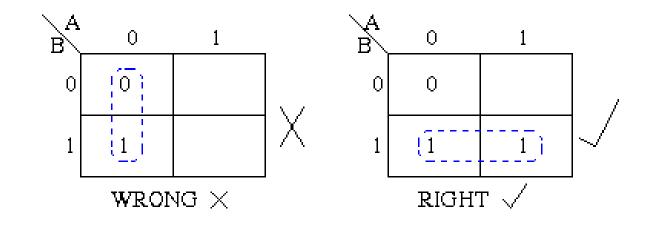
 $F(X, Y, Z) = \prod M(1, 3, 4, 6)$

Karnaugh Maps (K-maps)

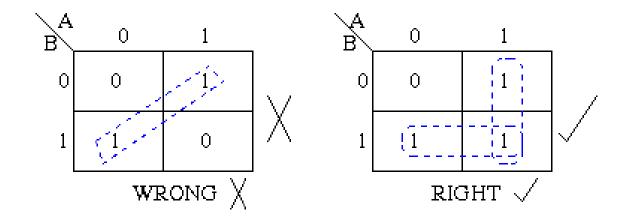
- A K-map is a collection of squares
 - Each square represents a minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
- The K-map can be viewed as
 - A reorganized version of the truth table
 - A topologically-warped Venn diagram as used to visualize sets in algebra of sets

Karnaugh Maps - Rules of Simplification

- The Karnaugh map uses the following rules for the simplification of expressions by *grouping* together <u>adjacent</u> cells containing *ones*
- 1. Groups may not include any cell containing a zero

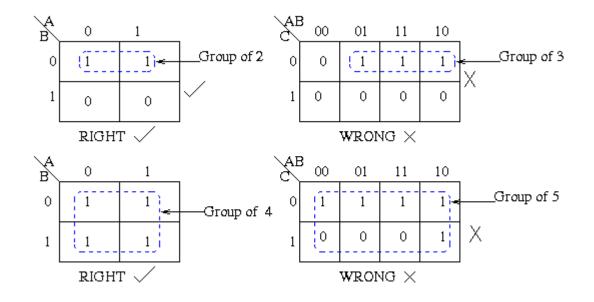


2. Groups may be horizontal or vertical, but not diagonal.

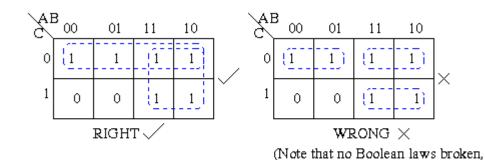


 Groups must contain 1, 2, 4, 8, or in general 2ⁿ cells. That is if n = 1, a group will contain two 1's since 2¹ = 2.

3. Grouping of 1 should be in 2^{n.} i.e. grouping should be in 1, 2's, 4's, 8's and so forth.

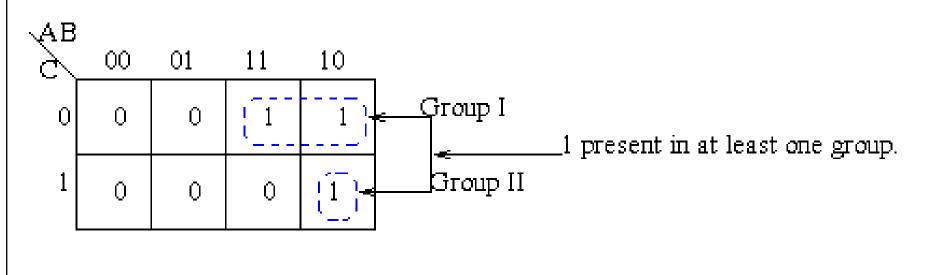


4. Each group should be as large as possible.

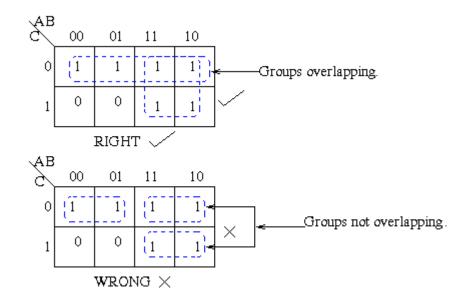


but not sufficiently minimal)

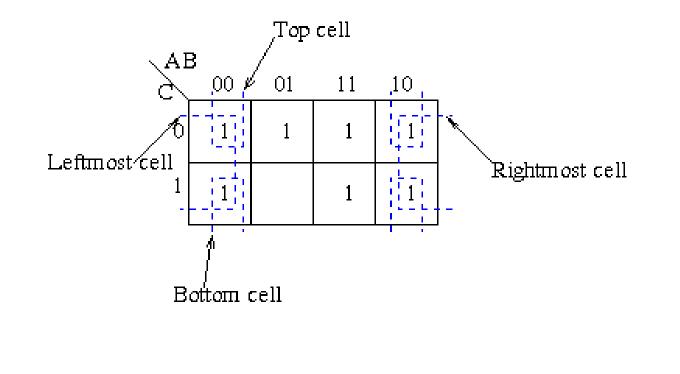
5. Each cell containing a *one* must be in at least one group.



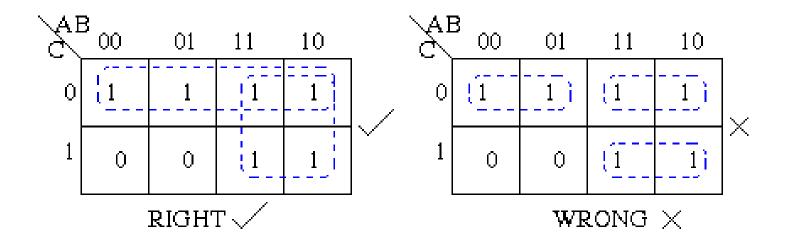
6. Groups may overlap



7. Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.

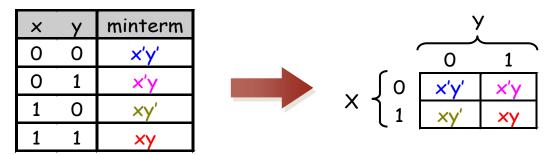


8. There should be as few groups as possible, as long as this does not contradict any of the previous rules.

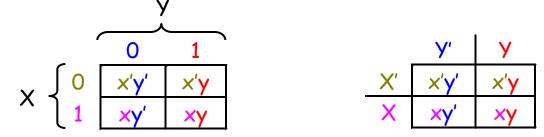


Re-arranging the truth table

• A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map.



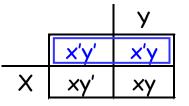
- Now we can easily see which minterms contain common literals.
 - Minterms on the left and right sides contain y' and y respectively.
 - Minterms in the top and bottom rows contain **x**' and **x** respectively.



• Imagine a two-variable sum of minterms:

x'y' + x'y

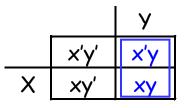
• Both of these minterms appear in the top row of a Karnaugh map, which means that they both contain the literal x'.



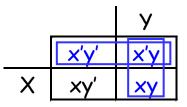
• What happens if you simplify this expression using Boolean algebra?

$$\begin{array}{ll} x'y' + x'y &= x'(y' + y) & [\mbox{ Distributive }] \\ &= x' \bullet 1 & [y + y' = 1] \\ &= x' & [x \bullet 1 = x] \end{array}$$

- Another example expression is x'y + xy.
 - Both minterms appear in the right side, where y is uncomplemented.
 - Thus, we can reduce x'y + xy to just y.

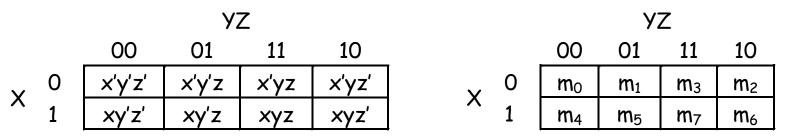


- How about x'y' + x'y + xy?
 - We have x'y' + x'y in the top row, corresponding to x'.
 - There's also x'y + xy in the right side, corresponding to y.
 - This whole expression can be reduced to x' + y.



Three-variable Karnaugh map

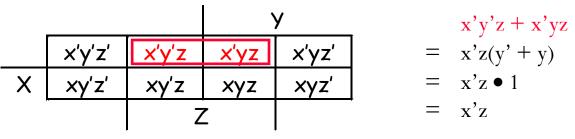
• For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky:



• Another way to label the K-map (use whichever you like):

	-		У		-					/
	x'y'z'	x'y'z	х′уz	x'yz'			mo	m_1	m ₃	m ₂
Х	xy'z'	xy'z	xyz	xyz'		Х	m ₄	m_5	m7	m ₆
		Z						Z	2	

• With this ordering, any group of 2, 4 or 8 adjacent squares on the map contains common literals that can be factored out.



• We'll use this property of adjacent squares to do our simplifications.

- Three variables maps exhibit the following characteristics:
 - One square represents a minterm of three literals
 - A rectangle of two squares represents a product term of two literals (or variables)
 - A rectangle of four squares represents a product term of one literal (or variable)
 - A rectangle of eight squares encompasses the entire map and produces a function that is always equal to logic 1.

Example K-map simplification

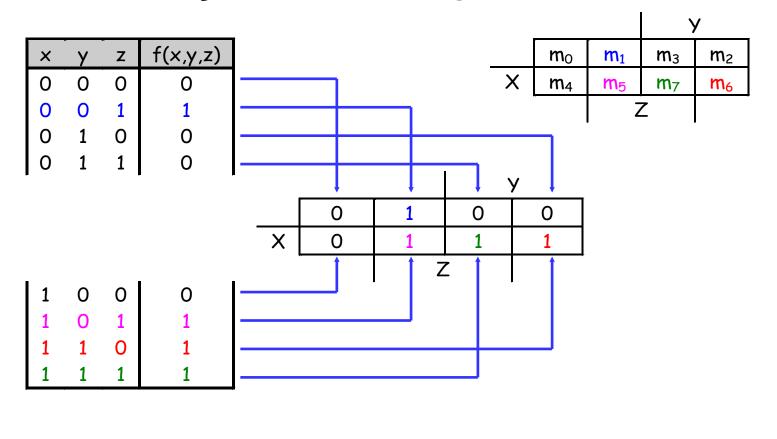
- Let's consider simplifying f(x,y,z) = xy + y'z + xz.
- First, you should convert the expression into a sum of minterms form, if it's not already.
 - The easiest way to do this is to make a truth table for the function, and then read off the minterms.
 - You can either write out the literals or use the minterm shorthand.
- Here is the truth table and sum of minterms for our example:

×	У	z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{x}'\mathbf{y}'\mathbf{z} + \mathbf{x}\mathbf{y}'\mathbf{z} + \mathbf{x}\mathbf{y}\mathbf{z}' + \mathbf{x}\mathbf{y}\mathbf{z} = \mathbf{m}_1 + \mathbf{m}_5 + \mathbf{m}_6 + \mathbf{m}_7$$

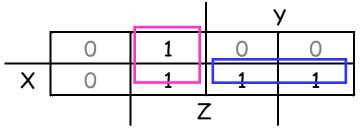
K-maps from truth tables

- You can also fill in the K-map directly from a truth table.
 - The output in row *i* of the table goes into square m_i of the K-map.
 - Remember that the rightmost columns of the K-map are "switched."



Grouping the minterms together

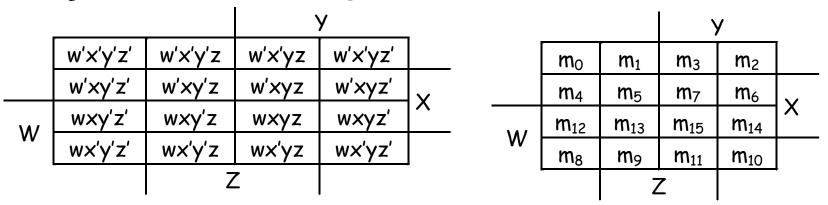
- The most difficult step is grouping together all the 1s in the K-map.
 - Make rectangles around groups of one, two, four or eight 1s.
 - All of the 1s in the map should be included in at least one rectangle.
 - Do *not* include any of the 0s.



- Each group corresponds to one product term. For the simplest result:
 - Make as few rectangles as possible, to minimize the number of products in the final expression.
 - Make each rectangle as large as possible, to minimize the number of literals in each term.
 - It's all right for rectangles to overlap, if that makes them larger.

Four-variable K-maps

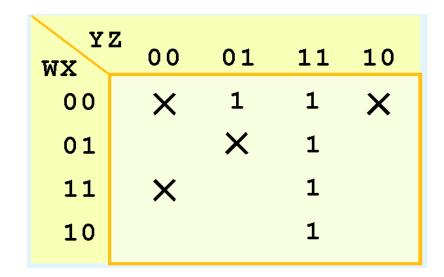
- We can do four-variable expressions too!
 - The minterms in the third and fourth columns, *and* in the third and fourth rows, are switched around.
 - Again, this ensures that adjacent squares have common literals.



- Grouping minterms is similar to the three-variable case, but:
 - You can have rectangular groups of 1, 2, 4, 8 or 16 minterms.
 - You can wrap around *all four* sides.

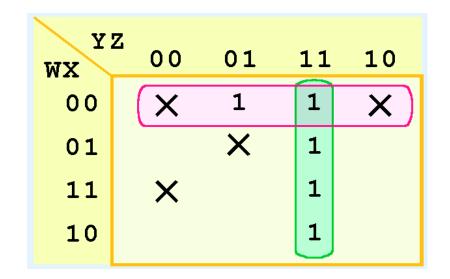
- Four variables maps exhibit the following characteristics:
 - A rectangle of 2 squares represents a product term of three literals (or variables)
 - A rectangle of 4 squares represents a product term of two literals (or variables)
 - A rectangle of 8 squares represents a product term of one literal (or variable)
 - A rectangle of 4 squares produces a function that is always equal to logic 1

- In a Kmap, a don't care condition is identified by an X in the cell of the minterm(s) for the don't care inputs, as shown below.
- In performing the simplification, we are free to include or ignore the X's when creating our groups.



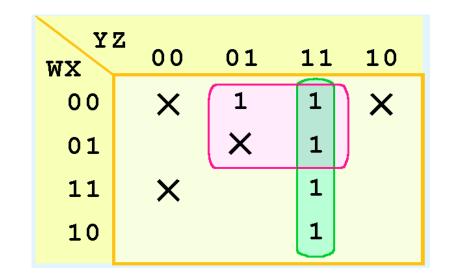
In one grouping in the Kmap below, we have the function:

 $F(W, X, Y, Z) = \overline{W}\overline{X} + YZ$



• A different grouping gives us the function:

 $F(W,X,Y,Z) = \overline{W}Z + YZ$



The truth table of:

F(W, X, Y, Z) = WX + YZ

is different from the truth table of:

 $F(W, X, Y, Z) = \overline{W}Z + YZ$

• However, the values for which they differ, are the inputs for which we have don't care conditions.

