
Logic Circuit

Boolean Variables

 A Boolean Variable takes the value of either 0 or 1.

 In digital electronics, Boolean 0 and 1 correspond to binary 0 and 1.

 In logic, 0 and 1 are sometimes called FALSE and TRUE.

 We use symbols to represent Boolean variables.

E.g.: A, B, C, X, Y, Z.

Logic Gate

 A logic gate is an elementary building block of a digital circuit .

 Most logic gates have two inputs and one output. At any given moment,

every terminal is in one of the two binary conditions low (0) or high (1),

represented by different voltage levels.

 The logic state of a terminal can, and generally does, change often, as the

circuit processes data.

 Logic gates are the building blocks of digital circuits. Combinations of logic

gates form circuits designed with specific tasks in mind.

 For example, logic gates are combined to form circuits to add binary

numbers (adders), set and reset bits of memory (flip flops), multiplex multiple

inputs, etc.

 There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and

XNOR.

Truth Table

 A truth table is a good way to show the function of a logic gate. It shows the

output states for every possible combination of input states. The symbols 0

(false) and 1 (true) are usually used in truth tables.

Logic Gate Symbols

Inputs and outputs

 Gates have two or more inputs, except a NOT gate which has only one

input. All gates have only one output. Usually the letters A, B, C and so on

are used to label inputs, and Q is used to label the output. On this page the

inputs are shown on the left and the output on the right.

The inverting circle (o)

 Some gate symbols have a circle on their output which means that their

function includes inverting of the output. It is equivalent to feeding the

output through a NOT gate. For example the NAND (Not AND) gate symbol

shown on the right is the same as an AND gate symbol but with the addition

of an inverting circle on the output.

Basic logic gates

 Not

 And

 Or

 Nand

 Nor

 Xor

x
x

x
y

xy x
y

xyz

z
x+yx

y

x
y

x+y+z

z

x
y

xy

x+yx
y

xÅyx
y

AND

 The AND gate requires two inputs and has one output.

 The AND gate only produces an output of 1 when BOTH the inputs are a 1,

otherwise the output is 0.

OR

 The OR gate has two input lines and one output line. Basically, if either or both

of the inputs are a 1, the resulting output value is a 1. Note in the truth table, the

only time the output is 0 is when both inputs are 0.

NOT

 The NOT gate is also known as an inverter, simply because it changes the

input to its opposite (inverts it).

 The NOT gate accepts only one input and the output is the opposite of the

input. In other words, a low-voltage input (0) is converted to a high-voltage

output (1). It's that simple!

 A common way of using the NOT gate is to simply attach the circle to the

front of another gate. This simplifies the circuit drawing and simply says:

"Invert the output from this gate."

 The NAND and NOR gates possess a special property: they are universal. That is,

given enough gates, either type of gate is able to mimic the operation of any other

gate type. Combinations of them can be used to accomplish any of the basic

operations and can thus produce an inverter, an OR gate or an AND gate.

NAND

 This is an AND gate with the output inverted, as shown by the 'o' on the output.

 The output is true if input A AND input B are NOT both true: Q = NOT (A AND B)

 A NAND gate can have two or more inputs, its output is true if NOT all inputs are true.

NOR

 This is an OR gate with the output inverted, as shown by the 'o' on the output.

The output Q is true if NOT inputs A OR B are true: Q = NOT (A OR B)

A NOR gate can have two or more inputs, its output is true if no inputs are true.

XOR

 The output Q is true if either input A is true OR input B is true, but not when

both of them are true: Q = (A AND NOT B) OR (B AND NOT A)

 This is like an OR gate but excluding both inputs being true.

 The output is true if inputs A and B are DIFFERENT. EX-OR gates can only
have 2 inputs.

XNOR

 This is an EX-OR gate with the output inverted, as shown by the 'o' on the

output.

 The output Q is true if inputs A and B are the SAME (both true or both false):

Q = (A AND B) OR (NOT A AND NOT B)

 EX-NOR gates can only have 2 inputs.

Basic Boolean Identities
 As with algebra, there will be Boolean operations that we will want to simplify

 We apply the following Boolean identities to help

 For instance, in algebra, x = y * (z + 0) + (z * 0) can be simplified to just x = y * z

Commutative

Associative

Simplification

Distributive

DeMorgan’s

Practice:

1. Demonstrate by means of truth tables the validities of the following identities:

a. (XYZ)’ = X’ + Y’ + Z’

b. X + YZ = (X + Y)(X + Z)

c. X’Y + Y’Z + X’Z = XY’ + YZ’ + X’Z

2. Prove the following identity of each of the following Boolean equations using algebraic
manipulation:

a. A’B + B’C’ + AB + B’C = 1

b. Y + X’Z + XY’ = X + Y + Z

c. AB + BC’D’ + A’BC + C’D = B + C’D

Karnaugh Map

Minterms – Sum of Product (SOP)
 A product term in which all the variables appear exactly once

(complemented or uncomplemented)

 The combination has the value 1

 E.g.: the four minterms for two variables, X and Y are X’Y’, X’Y, XY’ and

XY.

 A Boolean function can be represented algebraically from a given truth table

by forming the logical sum of all the minterms that produce 1 in the function.

 Expressed algebraically:

F = X’Y’Z’ + X’YZ’ + XY’Z + XYZ = m0 + m2 + m5 + m7

 In abbreviated form:

F(X, Y, Z) = Ʃm(0, 2, 5, 7)

Maxterms – Product of Sum (POS)
 A sum term that contains all the variables in complemented or

uncomplemented form

 The combination has the value of 0

 E.g.: the four minterms for two variables, X and Y are X’ + Y’, X’ + Y, X +

Y’ and X + Y.

 A boolean function can be represented algebraically from a given truth table
by forming the logical sum of all the maxterms that produce 0 in the function.

 Expressed algebraically:

F = (X + Y + Z’)(X + Y’ + Z’)(X’ + Y + Z)(X’ + Y’ + Z) = m1 + m3 + m4 + m6

 Abbreviated form:

F(X, Y, Z) = ∏M(1, 3, 4, 6)

Karnaugh Maps (K-maps)

 A K-map is a collection of squares

 Each square represents a minterm

 The collection of squares is a graphical representation of a Boolean function

 Adjacent squares differ in the value of one variable

 Alternative algebraic expressions for the same function are derived by recognizing
patterns of squares

 The K-map can be viewed as

 A reorganized version of the truth table

 A topologically-warped Venn diagram as used to visualize sets in algebra of sets

Karnaugh Maps - Rules of Simplification

 The Karnaugh map uses the following rules for the

simplification of expressions by grouping together adjacent

cells containing ones

1. Groups may not include any cell containing a zero

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html

2. Groups may be horizontal or vertical, but not

diagonal.

 Groups must contain 1, 2, 4, 8, or in general 2n cells.

That is if n = 1, a group will contain two 1's since

21 = 2.

3. Grouping of 1 should be in 2n. i.e. grouping should

be in 1, 2’s, 4’s, 8’s and so forth.

4. Each group should be as large as possible.

5. Each cell containing a one must be in at least one

group.

6. Groups may overlap

7. Groups may wrap around the table. The leftmost cell in a row

may be grouped with the rightmost cell and the top cell in a

column may be grouped with the bottom cell.

8. There should be as few groups as possible, as long as this does

not contradict any of the previous rules.

Re-arranging the truth table
 A two-variable function has four possible minterms. We can re-arrange these minterms into a

Karnaugh map.

 Now we can easily see which minterms contain common literals.

 Minterms on the left and right sides contain y’ and y respectively.

 Minterms in the top and bottom rows contain x’ and x respectively.

x y minterm

0 0 x’y’

0 1 x’y

1 0 xy’

1 1 xy

Y

0 1

0 x’y’ x’y
X

1 xy’ xy

Y

0 1

0 x’y’ x’y
X

1 xy’ xy

Y’ Y

X’ x’y’ x’y

X xy’ xy

 Imagine a two-variable sum of minterms:

x’y’ + x’y

 Both of these minterms appear in the top row of a Karnaugh map, which means that they both

contain the literal x’.

 What happens if you simplify this expression using Boolean algebra?

x’y’ + x’y = x’(y’ + y) [Distributive]

= x’ 1 [y + y’ = 1]

= x’ [x 1 = x]

Y

x’y’ x’y

X xy’ xy

 Another example expression is x’y + xy.

 Both minterms appear in the right side, where y is uncomplemented.

 Thus, we can reduce x’y + xy to just y.

 How about x’y’ + x’y + xy?

 We have x’y’ + x’y in the top row, corresponding to x’.

 There’s also x’y + xy in the right side, corresponding to y.

 This whole expression can be reduced to x’ + y.

Y

x’y’ x’y

X xy’ xy

Y

x’y’ x’y

X xy’ xy

Three-variable Karnaugh map

 For a three-variable expression with inputs x, y, z, the arrangement of minterms is more

tricky:

 Another way to label the K-map (use whichever you like):

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

YZ

00 01 11 10

0 x’y’z’ x’y’z x’yz x’yz’
X

1 xy’z’ xy’z xyz xyz’

YZ

00 01 11 10

0 m0 m1 m3 m2
X

1 m4 m5 m7 m6

 With this ordering, any group of 2, 4 or 8 adjacent squares on the map
contains common literals that can be factored out.

 “Adjacency” includes wrapping around the left and right sides:

 We’ll use this property of adjacent squares to do our simplifications.

x’y’z + x’yz

= x’z(y’ + y)

= x’z 1

= x’z

x’y’z’ + xy’z’ + x’yz’ + xyz’

= z’(x’y’ + xy’ + x’y + xy)

= z’(y’(x’ + x) + y(x’ + x))

= z’(y’+y)

= z’

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

Y

x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’

Z

 Three variables maps exhibit the following characteristics:

 One square represents a minterm of three literals

 A rectangle of two squares represents a product term of two literals

(or variables)

 A rectangle of four squares represents a product term of one literal

(or variable)

 A rectangle of eight squares encompasses the entire map and

produces a function that is always equal to logic 1.

Example K-map simplification
 Let’s consider simplifying f(x,y,z) = xy + y’z + xz.

 First, you should convert the expression into a sum of minterms form, if it’s not already.

 The easiest way to do this is to make a truth table for the function, and then read off the

minterms.

 You can either write out the literals or use the minterm shorthand.

 Here is the truth table and sum of minterms for our example:

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

f(x,y,z) = x’y’z + xy’z + xyz’ + xyz

= m1 + m5 + m6 + m7

K-maps from truth tables
 You can also fill in the K-map directly from a truth table.

 The output in row i of the table goes into square mi of the K-map.

 Remember that the rightmost columns of the K-map are “switched.”

Y

m0 m1 m3 m2

X m4 m5 m7 m6

Z

x y z f(x,y,z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Y

0 1 0 0

X 0 1 1 1

Z

Grouping the minterms together

 The most difficult step is grouping together all the 1s in the K-map.

 Make rectangles around groups of one, two, four or eight 1s.

 All of the 1s in the map should be included in at least one rectangle.

 Do not include any of the 0s.

 Each group corresponds to one product term. For the simplest result:

 Make as few rectangles as possible, to minimize the number of products in the final

expression.

 Make each rectangle as large as possible, to minimize the number of literals in each term.

 It’s all right for rectangles to overlap, if that makes them larger.

Y

0 1 0 0

X 0 1 1 1

Z

Four-variable K-maps

 We can do four-variable expressions too!

 The minterms in the third and fourth columns, and in the third and fourth rows, are

switched around.

 Again, this ensures that adjacent squares have common literals.

 Grouping minterms is similar to the three-variable case, but:

 You can have rectangular groups of 1, 2, 4, 8 or 16 minterms.

 You can wrap around all four sides.

Y

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y

w’x’y’z’ w’x’y’z w’x’yz w’x’yz’

w’xy’z’ w’xy’z w’xyz w’xyz’

wxy’z’ wxy’z wxyz wxyz’
X

W
wx’y’z’ wx’y’z wx’yz wx’yz’

Z

 Four variables maps exhibit the following characteristics:

 A rectangle of 2 squares represents a product term of three literals

(or variables)

 A rectangle of 4 squares represents a product term of two literals

(or variables)

 A rectangle of 8 squares represents a product term of one literal (or

variable)

 A rectangle of 4 squares produces a function that is always equal to

logic 1

Don’t Care Conditions

 In a Kmap, a don’t care condition is identified by

an X in the cell of the minterm(s) for the don’t care
inputs, as shown below.

 In performing the simplification, we are free to

include or ignore the X’s when creating our groups.

Don’t Care Conditions

 In one grouping in the Kmap below, we have the

function:

 A different grouping gives us the function:

Don’t Care Conditions

Don’t Care Conditions

 The truth table of:

is different from the truth table of:

 However, the values for which they differ, are the

inputs for which we have don’t care conditions.

